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Abstract  10 

The objectives of this research were to compare variance components, genetic 11 

parameters, prediction accuracies, and ranking of animals for 305-day milk yield (MY) and 12 

305-day fat yield (FY) using a polygenic and three genomic-polygenic models in a Thai 13 

multibreed dairy population.  The genomic-polygenic models utilized 7,656 SNP (GM7K), 14 

74,144 actual and imputed 80K SNP from FImpute (GM80K-FI), and 73,600 actual and 15 

imputed 80K SNP from Findhap (GM80K-FH). Traits were gathered from 8,361 first-16 

lactation cows in 810 farms that had their first calving between 1989 and 2014.  Variance 17 

components and genetic parameters were estimated using REML procedures.  Fixed effects 18 

included contemporary group (herd-year-season), calving age and heterosis. Random 19 

effects were animal additive genetic and residual.  Estimates of variance components, 20 

heritabilities and prediction accuracies for MY and FY from GM80K-FI and GM80K-FH 21 

were similar.  They were also the highest, followed by those from GM7K, and the lowest 22 

were those from the polygenic model.  Correlations estimates between MY and FY were 23 

similar across models.  Different MY and FY EBV rankings existed across models.  The 24 

highest rank correlations were those between rankings from GM80K-FI and GM80K-FH.  25 

The second highest rank correlations between rankings from GM7K and GM80K-FI, and 26 

GM7K and GM80K-FH.  The lowest rank correlations were between rankings from the 27 

polygenic model and the three genomic-polygenic models.  Rank correlations indicated that 28 

selection response would differ when choosing replacement animals based on rankings 29 

from polygenic and genomic-polygenic EBV.  Accuracy of EBV indicated that the highest 30 

expected selection responses for MY and FY would be achieved by utilizing EBV from 31 

GM80K-FI and GM80K-FH.  Lastly, the similarity between results from GM80K-FI and 32 
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GM80K-FH suggested that genotype imputation with either FImpute or Findhap would be 33 

appropriate for this Thai multibreed dairy population.  34 

 35 

Key words:  Dairy cattle, Genomic, Imputation, Milk yield, Fat yield, Multibreed 36 

 37 

1. Introduction   38 

 The availability of thousands of genotypes across the genome has provided valuable 39 

information for the characterization and evaluation of livestock animals.  Genomic 40 

evaluations that utilize pedigree, phenotypes, and genotypes have increased accuracies of 41 

prediction and rates of genetic progress in animal breeding programs (VanRaden et al., 42 

2009; de Roos et al., 2011).  Currently, genomic evaluation is widely utilized in the 43 

livestock industry, especially in dairy cattle (Schenkel et al., 2009; VanRaden et al., 2009; 44 

de Roos et al., 2011; Wiggans et al., 2011).  Conversely, dairy cattle in Thailand are 45 

genetically evaluated using only pedigree and phenotypic information.  The main trait of 46 

the Thai genetic evaluation is milk yield, the most important trait economically for Thai 47 

dairy producers.  To improve the accuracy of genetic evaluation and speed up selection 48 

response for milk yield, fat yield, and other dairy traits, a national project for the 49 

development of a national genomic-polygenic evaluation system in Thailand was started in 50 

2012 (Koonawootrittriron et al., 2012).  51 

Utilization of high density genotypic data can increase the effectiveness of genomic 52 

evaluation (VanRaden et al., 2011; Mulder et al., 2012).  However, budgetary restrictions 53 

determined that only a fraction of animals in the Thai genomic-polygenic evaluation project 54 

would be genotyped with a high-density chip, whereas the rest would be genotyped with 55 

cheaper lower density chips, followed by imputation from the low density chips to the high 56 
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density chip.  Two of the most frequently used imputation programs in dairy cattle are 57 

FImpute (Sargolzaei et al., 2014) and Findhap (VanRaden and Sun, 2014).  FImpute uses 58 

pedigree information to impute unknown genotypes using known relationships among 59 

animals followed by a population algorithm (overlapping sliding windows) to find shared 60 

haplotype segments assuming that all animals are related to each other. Findhap uses a 61 

population algorithm to construct a library of haplotypes, then it matches haplotypes from 62 

target animals with those in the library using first a population algorithm followed by a 63 

population-pedigree algorithm.  These two programs have yielded imputation accuracies of 64 

93% to 99% in various dairy cattle populations (Ma et al., 2013; VanRaden et al., 2013; 65 

Sargolzaei et al., 2014; He et al., 2015).  To develop a national genomic-polygenic 66 

evaluation system, variance components, genetic parameters, prediction accuracies, and 67 

ranking of animals need to be compared among polygenic and genomic-polygenic 68 

prediction models using Thai dairy information.  In addition, the impact of FImpute and 69 

Findhap on estimates of genetic parameters, prediction accuracies, and animal rankings 70 

from genomic-polygenic models also needs to be assessed in the Thai dairy population.  71 

Thus, the objectives of this research were to compare variance components, genetic 72 

parameters, prediction accuracies, and ranking of animals for 305-day milk yield and 305-73 

day fat yield using a polygenic model, a genomic-polygenic model with 7K SNP, a 74 

genomic-polygenic model with actual and imputed 80K SNP from FImpute, and a 75 

genomic-polygenic model with actual and imputed 80K SNP from Findhap, in a Thai 76 

multibreed dairy cattle population. 77 

 78 

2. Materials and methods 79 

2.1. Animals, management, and traits 80 
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 Animals used in this research were 8,361 first-lactation cows from 810 farms 81 

located across five regions in Thailand (North, Northeastern, Western, Central, and 82 

Southern).  These cows were the progeny of 1,210 sires and 6,992 dams, and had their first 83 

calving between 1989 and 2014.  The Thai multibreed population was generated through 84 

upgrading of cattle from various breeds (Brahman, Jersey, Brown Swiss, Red Dane, Red 85 

Sindhi, Sahiwal and Thai Native) to Holstein (Koonawootrittriron et al., 2009).  86 

Approximately 88% of all animals in the dataset were 75% Holstein and above, and 94% of 87 

sires and 73% of dams were 75% Holstein or higher.  Climate was tropical with 88 

temperatures ranging from 15° to 36° Celsius and relative humidity ranging from 29 to 89 

99%.  Seasons are winter (November to February; average temperature of 26° Celsius and 90 

average relative humidity of 69%), summer (March to June; average temperature of 29° 91 

Celsius and average relative humidity of 72%), and rainy (July to October; average 92 

temperature of 28° Celsius and average relative humidity of 80%).  Cows were kept in open 93 

barns with free access to mineral supplement. Concentrate (14 to 22% of CP, 63 to 83% of 94 

NFE; approximately 1 kg of concentrate per 2 kg of milk) was fed to cows during milking 95 

times (5 am and 3 pm).  Roughage fed to cows consisted of grasses (Penisetum purpurium, 96 

Brachiaria mutica, and Penicum maximum), crop-residues (rice straw, corn stover, and 97 

sugarcane), or agricultural by-products (cassava pulp, and bagasse). 98 

Traits were 305-day milk yield (MY) and 305-day fat yield (FY).  Monthly test-day 99 

fat yield was equal to the product of test-day milk yield and fat content, which were 100 

collected monthly after calving until the end of lactation.  Monthly test-day milk yield and 101 

fat yield were used to compute MY and FY using the test interval method (Sargent et al., 102 

1968; Koonawootrittriron et al., 2001). 103 

 104 
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2.2. Genotypic data 105 

 Blood or semen samples were collected from 2,661 animals (89 sires and 2,572 106 

cows) for DNA extraction with a MasterPure
TM

 DNA Purification Kit (Epicentre
®
, 107 

Madison, WI, USA).  The quality of DNA samples was measured using a NanoDrop
TM

 108 

2000 Spectrophotometer (Thermo Fisher Scientific Inc., Wilmington, DE, USA). Only 109 

DNA that had a ratio of absorbance at 260 nm to absorbance at 280 nm (purity ratio) of 110 

approximately 1.8, and concentration higher than 15 ng/µl were forwarded to GeneSeek 111 

(GeneSeek, Lincoln, NE, USA) for genotyping with GeneSeek genomic profiler (GGP) 9K 112 

(n = 1,412), 20K (n = 570), 26K (n = 540), and 80K (n = 139) chips.  113 

 The numbers of SNP markers from autosomal chromosomes and the X chromosome 114 

were 8,590 for the GGP9K, 19,616 for the GGP20K, 25,979 for the GGP26K, and 76,694 115 

for the GGP80K.  These actual SNP markers were used to construct three sets of SNP for 116 

genomic-polygenic comparisons that included: 1) actual 7K SNP markers (SNP set 1), 2) 117 

actual and imputed 80K SNP markers from FImpute (SNP set 2) and, 3) actual and imputed 118 

80K SNP markers from Findhap (SNP set 3).  The SNP markers in common among the 119 

GGP9K, GGP20K, GGP26K, and GGP80K chips (n = 7,667) were used to represent SNP 120 

set 1.  Construction of SNP sets 2 and 3 was accomplished by imputation from GGP9K, 121 

GGP20K, and GGP26K to GGP80K using FImpute 2.2 (Sargolzaei et al., 2014) and 122 

Findhap 4 (VanRaden and Sun, 2014), respectively.  Actual and imputed SNP markers with 123 

minor allele frequencies lower than 0.04 or call rates lower than 0.9 were removed.  After 124 

these quality checks, 7,656, 74,144, and 73,600 SNP markers were kept to represent the 125 

genotypic information for SNP sets 1, set 2, and set 3.  126 

 127 

2.3 Estimation of variance and covariance components 128 
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 Estimates of variance and covariance components for MY and FY were obtained 129 

using a bivariate polygenic model and three bivariate single-step genomic-polygenic 130 

models (Aguilar et al., 2010), namely: 1) GM7K model that used pedigree, phenotypes, and 131 

SNP set 1 genotypes, 2) GM80K-FI model that used pedigree, phenotypes, and SNP set 2 132 

genotypes, and 3) GM80K-FH model that used pedigree, phenotype, SNP set 3 genotypes.  133 

Fixed effects for the polygenic model and genomic-polygenic models included 134 

contemporary group (herd-year-season), calving age, and heterosis (as a function of 135 

Holstein-Other Breeds heterozygosity, i.e., as a function of the probability of having an 136 

allele from Holstein and an allele from Other Breeds in 1 locus).  Random effects were 137 

animal additive genetic and residual.  The mean for random effects was assumed to be zero 138 

in all models.  The variance-covariance matrix among additive genetic effects for the 139 

polygenic model was equal to 𝐴 ∗ 𝜎𝑎
2, where 𝐴 was the additive relationship matrix among 140 

all animals in the population, “*” was the Kronecker product, and 𝜎𝑎
2 was the additive 141 

genetic variance.  The variance-covariance matrix among additive genetic effects for all 142 

genomic-polygenic models was equal to:  143 

[
𝐴11 + 𝐴12𝐴22

−1(𝐺22 − 𝐴22)𝐴22
−1𝐺21 𝐴12𝐴22

−1𝐺22

𝐺22𝐴22
−1𝐴21 𝐺22

] * 𝜎𝑎
2, 144 

where 𝐴11 was the additive relationship submatrix among all non-genotyped animals, 𝐴12 145 

was the additive relationship submatrix among non-genotyped and genotyped animals, 146 

𝐴22
−1 was inverse of the additive relationship submatrix for genotyped animals, 𝐺22 was the 147 

matrix of genomic relationships for genotyped animals (VanRaden, 2008; Aguilar et al., 148 

2010).  Matrix 𝐺22 was computed as 𝑍𝑍′ 2 ∑ 𝑝𝑗 (1 − 𝑝𝑗)⁄ , where 𝑝𝑗 = frequency of allele 2 149 

in locus j in the Thai dairy population, 𝑧𝑖𝑗 = (0 − 2𝑝𝑗) for genotype = 11 in locus j, 𝑧𝑖𝑗 =150 

(1 − 2𝑝𝑗) for genotype = 12 or 21 in locus j, and  𝑧𝑖𝑗 = (2 − 2𝑝𝑗) for genotype = 22 in 151 
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locus j.  Matrix 𝐺22 was scaled based on matrix 𝐴22 using the default rule of program 152 

PREGSF90 from the BLUPF90 family programs (Misztal et al., 2002), i.e., that the mean of 153 

the diagonal elements of 𝐺22 = mean of the diagonal elements of 𝐴22, and that the mean of the 154 

off-diagonal elements of 𝐺22 = mean of the off-diagonal elements of 𝐴22.   155 

The BLUPF90 family programs (Misztal et al., 2002) was utilized to estimate 156 

variance components and genetic parameters for MY and FY.  Variance components were 157 

estimated using an average information restricted maximum likelihood algorithm using 158 

AIREMLF90 (Tsuruta, 2014). Standard errors for additive genetic, and environmental 159 

variances and covariances were computed as square roots of the diagonal elements of the 160 

inverse of the average information matrix. The repeated sampling approach of 161 

Meyer and Houle (2013) was used to estimate phenotypic variances and covariances, 162 

heritabilities, and their standard deviations.  Phenotypic, genetic, and environmental 163 

correlations including their standard deviations for MY and FY were also estimated using 164 

the repeated sampling approach.  Statistical tests to determine the significance of 165 

differences between variance components and genetic parameters across polygenic and 166 

genomic-polygenic models were beyond the scope of this research.  Thus, comparisons 167 

among estimates of variance components and genetic parameters here represent 168 

comparative descriptions of values obtained with the polygenic and genomic-polygenic 169 

models in the Thai multibreed dairy population. 170 

 171 

2.4. Prediction accuracies and animals rankings 172 

Animal EBV for MY and FY were computed using the polygenic and the three 173 

genomic-polygenic models (GM7K, GM80K-FI, and GM80K-FH).  Prediction accuracies 174 
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for each EBV was obtained as√1 −
𝑃𝐸𝑉

𝜎𝑎
2 , where 𝑃𝐸𝑉 was the prediction error variance.  175 

Rankings of animal EBV for MY and FY were compared using Spearman’s rank 176 

correlations using the CORR procedure of SAS (SAS, 2003).  Rank correlations were 177 

computed for each trait for all animals in the population, only sires (top 5%, 15%, 25%, and 178 

all sires), and only cows (top 5%, 15%, 25%, and all cows). 179 

 180 

3. Results and discussion 181 

3.1. Variance components and genetic parameters 182 

 The scaling strategy used for matrix 𝐺22 worked well for the Thai population.  The 183 

statistics of the diagonal and off-diagonal elements of matrices 𝐴22 and matrices 𝐺22 for the 184 

GM7K, GM80K-FI, and GM80K-FH models indicated that these two matrices were similar 185 

(Table 1).  In particular, the means of their diagonal elements were all equal to 1 and the 186 

mean of their off-diagonal elements were equal to zero, ensuring that estimates of variance 187 

components and genetic parameters as well as additive genetic predictions from genomic-188 

polygenic models would be unbiased (Chen et al., 2011; Forni et al., 2011; Simeone et al., 189 

2012). 190 

Estimates of variances and covariances for MY and FY from the polygenic model 191 

and the three genomic-polygenic models are shown in Table 2 for additive genetic effects, 192 

in Table 3 for environmental effects, and in Table 4 for phenotypic effects.  Estimates of 193 

phenotypic variances and covariances were similar across models.  However, estimates of 194 

additive genetic variances and covariances for MY and FY were larger for the GM7K 195 

model (12%), and the GM80K-FI (46%) and GM80K-FH (46%) models than 196 

corresponding values from the polygenic model.  Conversely, estimates of environmental 197 
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variances and covariances for all genomic-polygenic models were lower (2% for GM7K, 198 

7% for GM80K-FI and 7% for GM80K-FH) than those from the polygenic model.  These 199 

results indicated that the inclusion of genotypes in addition to pedigree and phenotypes in 200 

genomic-polygenic models accounted for substantially larger amounts of additive genetic 201 

variation than by using only pedigree and phenotypic information in the polygenic model.   202 

Similarly, additive genetic variances and covariances were larger for the GM80K-FI 203 

(29%) and GM80K-FH (29%) models than for the GM7K model, whereas environmental 204 

variances and covariances were lower for the GM80K-FI (6%) and GM80K-FH (6%) 205 

models than for the GM7K model.  This indicated that the additional SNP used by the 206 

GM80K-FI (74,144 SNP) and GM80K-FH (73,600 SNP) models explained nearly 30% 207 

more additive genetic variation for MY and FY than that accounted for by the 7,656 SNP in 208 

the GM7K model. 209 

Variance and covariance components for MY and FY obtained with the GM80K-FI 210 

and GM80K-FH models were nearly identical, except for the additive genetic variance for 211 

FY (229.9 kg
2 

for GM80K-FI and 196.1 kg
2 

for GM80K-FH; Table 2).  The additive 212 

genetic variance for FY computed with the GM80K-FI model was 17% higher than the 213 

estimate from GM80K-FH.  This higher value may have been due to the larger SNP 214 

markers were used in GM80K-FI (n = 74,144) than GM80K-FH (n = 73,600).  Perhaps the 215 

imputed SNP genotypes from FImpute managed to extract additional additive genetic 216 

variability for FY beyond that uncovered by the set of imputed SNP from Findhap.   217 

Table 5 shows estimates of heritabilities and correlations for MY and FY obtained 218 

using the polygenic model and the three genomic-polygenic models (GM7K, GM80K-FI, 219 

and GM80K-FH).  The heritabilities form the polygenic model were the lowest for both 220 

MY (0.15) and FY (0.14).  Heritabilities estimates for MY tended to increase with the 221 
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number of SNP included in the model (from 0.19 for GM7K to 0.26 for GM80K-FI and 222 

GM80K-FH).  This trend was less noticeable for FY, where heritabilities increased from 223 

0.15 for GM7K to 0.18 for GM80K-FI and 0.16 for GM80K-FH.  Heritability estimates for 224 

MY and FY from the GM80K-FI and GM80K-FH models were on the average 25% higher 225 

than estimates from the GM7K model, and 47% higher than estimates from the polygenic 226 

model.  This indicated that genomic-polygenic models likely accounted for additive genetic 227 

relationships among animals in the Thai population more accurately resulting in higher 228 

additive genetic variances and heritabilities than those from polygenic models.  Nearly 229 

identical environmental and phenotypic correlations were obtained across models, but 230 

estimates of genetic correlations between MY and FY using the polygenic and GM80K-FH 231 

models were slightly higher than estimates computed using the GM7K and GM80K-FI 232 

models.  The similarity of correlations estimates between MY and FY among the four 233 

models indicated that all models accounted for correlations between these two traits to a 234 

similar extent. 235 

The heritabilities estimated here for MY and FY with all models were somewhat 236 

lower than those estimated in various Thai multibreed populations using polygenic models 237 

(0.31 to 0.38 for MY: Koonawootrittriron et al., 2009; Sarakul et al., 2011; Jattawa et al., 238 

2012; Endris et al., 2013, and 0.25 for FY: Koonawootrittriron et al., 2009).  Heritabilities 239 

estimated here for MY using the GM80K-FI and GM80K-FH models were within the range 240 

of estimates of genomic heritabilities for Holstein cattle from temperate regions (0.23 to 241 

0.30; Gao et al., 2012; Rodríguez-Ramilo et al., 2014; Tsuruta et al, 2014; Bauer et al., 242 

2015), but heritabilities for FY were somewhat lower (0.28 to 0.30; Gao et al., 2012; 243 

Rodríguez-Ramilo et al., 2014).  Higher estimates of heritability for MY and FY with 244 

GM80K-FI and GM80K-FH models will increase the accuracy of genetic predictions 245 
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resulting in a more reliable identification of the superior sires and cows in this Thai dairy 246 

population.  Continued use of genotyping with high-density and medium-density chips 247 

coupled with genomic-polygenic evaluations and extensive use of top ranking sires and 248 

cows should accelerate the rate of genetic progress for MY and FY in this population.   249 

Similar variance components and genetic parameters were estimated by the 250 

GM80K-FI and GM80K-FH models reflecting a high degree of similarity between the 251 

imputed genotypes from FImpute and Findhap.  This was likely due to the algorithmic 252 

resemblance of these two programs (both use population and pedigree information to 253 

impute genotypes) and their high level of imputation accuracy.  Imputation accuracy for 254 

FImpute and Findhap was found to be high in several dairy populations (Ma et al., 2013; 255 

VanRaden et al., 2013; Sargolzaei et al., 2014; He et al., 2015).  Accuracies from low 256 

density to 50K chips have ranged from 95% to 99% for FImpute and from 93% to 99% for 257 

Findhap.  Further, the highest additive genetic variances and heritabilities obtained here 258 

were from genomic-polygenic programs using actual and imputed SNP from 80K chips 259 

(GM80K-FI and GM80K-FH), indicating that genomic imputation can be a reasonable 260 

alternative to increase the effectiveness of genetic evaluation and selection under tropical 261 

conditions in Thailand.   262 

 263 

3.2. Accuracy of polygenic and genomic-polygenic EBV 264 

 Fig. 1 shows the EBV accuracies for MY and FY computed from the polygenic 265 

model and the three genomic-polygenic models (GM7K, GM80K-FI, and GM80K-FH).  266 

The GM80K-FI and GM80K-FH models had the highest EBV accuracies (average of 267 

38.8% for MY and 32.5% for FY), GM7K model was second (36.7% for MY, and 31.4% 268 

for FY), and the least accurate was the polygenic model (31.5% for MY, and 24.4% for 269 
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FY).  Gains in EBV accuracies were 5.2% between the polygenic and the GM7K models 270 

and 7.2% between the polygenic and the GM80K-FI and GM80K-FH models.  The 271 

increase in EBV accuracy between the low density GM7K and the high density GM80K-FI 272 

and GM80K-FH models was only 2%.  This indicated that a strategy to keep genotyping 273 

costs reasonably low in this population would be to genotype animals that are highly 274 

connected in the population (i.e., most sires and some dams) with high density chips, and 275 

use low density chips with the rest of the population. 276 

 277 

  The higher prediction accuracies obtained here with the GM80K-FI and GM80K-278 

FH models was in agreement with previous studies that found that higher number of SNP in 279 

genomic evaluation yielded higher levels of prediction accuracies for MY and FY in dairy 280 

cattle (VanRaden et al., 2009; Mulder et al., 2012).  However, the gains in EBV accuracy in 281 

the Thai multibreed population (5.2% to 7.2%) were lower than the accuracy gains obtained 282 

in various Holstein dairy populations (23% to 32%; de Roos et al., 2009; Schenkel et al., 283 

2009; VanRaden et al., 2009; Wiggans et al., 2011).  Previous studies have indicated that 284 

the larger the number of genotyped animals the higher the prediction accuracies in a 285 

population (Goddard, 2009; VanRaden et al., 2011; Mulder et al., 2012).  Thus, the lower 286 

EBV accuracy gains obtained here may have been partly due to the small number of 287 

animals genotyped in this population (2,661) compared to the Holstein populations in other 288 

studies (5,335 to 63,615).  Consequently, prediction accuracies of genomic-polygenic 289 

evaluations in Thailand will likely increase as higher numbers of dairy animals are 290 

genotyped in the future.  291 

Using super high density chips (777K) have been proposed to increase prediction 292 

accuracies in genomic evaluation (Su et al., 2012; VanRaden et al., 2013).  However, 293 
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prediction accuracies substantially increased as numbers of SNP increased from low (3K) 294 

to high density chips (50K; VanRaden et al., 2011; Mulder et al., 2012), but increased only 295 

slightly from high density (50K) to super high density chips (777K; Harris et al., 2011; 296 

VanRaden et al., 2011; Erbe et al., 2012; Su et al., 2012).  This indicates that genotyping 297 

animals with high density chips (50K, 80K) would produce genomic-polygenic EBV of 298 

sufficient accuracy to rank animals appropriately for genetic selection.  VanRaden et al. 299 

(2011) also indicated that prediction accuracies were found to be more affected by numbers 300 

of genotyped animals than number of SNP markers.  Thus, prediction accuracies will 301 

continue to increase as numbers of genotyped animals increase over time.  As mentioned 302 

above, genotyping costs could be kept low if only highly related animals were genotyped 303 

with high density chips (mostly sires) and the remaining animals (mostly cows) were 304 

genotyped with low density chips and subsequently imputed to a high density chip.   305 

 306 

3.3. Ranking of animals from polygenic and three genomic-polygenic models 307 

 Spearman rank correlations between rankings of all animal EBV from the polygenic 308 

model and the three genomic-polygenic models ranged from 0.80 to 0.96 for MY and 0.80 309 

to 0.93 for FY (Table 6).  Rankings between animal EBV from GM80K-FI and GM80K-310 

FH had the highest correlations (0.96 for MY, and 0.93 for FY).  Rank correlations between 311 

animal EBV from the low density GM7K and the high density models (GM80K-FI: 0.90 312 

for MY, and 0.91 for FY; GM80K-FH: 0.89 for MY, and 0.86 for FY) were the second 313 

highest.  The lowest rank correlations were between animal EBV from the three genomic-314 

polygenic models (GM7K, GM80K-FI and GM80K-FH), and the polygenic model (0.80 to 315 

0.84 for MY, and 0.79 to 0.83 for FY). 316 
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Spearman rank correlations between polygenic and three genomic-polygenic models 317 

were also computed for sires only (top 5%, 15%, 25%, and all sires; Table 7) and for cows 318 

only (top 5%, 15%, 25%, and all cows; Table 8).  The lowest rank correlations were those 319 

for the top 5% of sires and cows.  Rank correlations for the top 5% of sires ranged from 320 

0.50 between the polygenic and GM7K models to 0.87 between GM80K-FI and GM80K-321 

FH for MY, and from 0.61 between the polygenic and GM80K-FH models to 0.76 between 322 

GM80K-FI and GM80K-FH for FY.  Rank correlations for the top 5% of cows ranged from 323 

0.64 between the polygenic and GM80K-FI models to 0.90 between GM80K-FI and 324 

GM80K-FH for MY, and from 0.59 between the polygenic and GM80K-FH models to 0.79 325 

between GM7K and GM80K-FI for FY.  Rank correlations tended to increase as the 326 

fraction of sires (or cows) increased from the top 5% to the top 15% to the top 25% to all 327 

sires (or all cows).   328 

Rank correlations for all sires and for all cows from the polygenic model and the 329 

three genomic-polygenic models followed the same pattern as rank correlations for all 330 

animals in the population.  The highest rank correlations for MY and FY were between 331 

EBV from GM80K-FI and GM80K-FH (0.92 to 0.94 for all sires and 0.93 to 0.96 for all 332 

cows).  The second highest rank correlations between MY and FY were those between 333 

EBV from GM7K and from GM80K-FI and GM80K-FH (0.87 to 0.93 for all sires and 0.86 334 

to 0.91 for all cows).  The lowest rank correlations for MY and FY were between animal 335 

EBV from GM7K, GM80K-FI and GM80K-FH and animal EBV from polygenic model 336 

(0.80 to 0.88 for all sires and 0.79 to 0.84 for all cows). 337 

 As expected, sires and cows in the top 5%, 15%, and 25% differed across models.  338 

Percentages of animals in common in the top 5%, 15%, and 25% for pairs of models are 339 

shown in Table 7 for sires and in Table 8 for cows.  Most percentages of animals in 340 
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common in the top 5%, 15%, and 25% between pairs of models were higher for EBV 341 

rankings for MY and FY from models using high density chips (GM80K-FI and GM80K-342 

FH), followed by percentages of animals in common between EBV from the model using 343 

the low density (GM7K) and the models using a high density chip (GM80K-FI and 344 

GM80K-FH), and lastly by percentages of animals in common between EBV from the 345 

polygenic model and all genomic-polygenic models (GM7K, GM80K-FI, and GM80K-346 

FH).  As an illustration, consider the top 5% for MY.  The highest percentages of animals 347 

in common across models in the top 5% for MY occurred between rankings from GM80K-348 

FI and GM80K-FH (87% of sires; 89% of cows), followed by percentages of animals in 349 

common between GM7K and the high density genomic-polygenic models (76% to 79% for 350 

sires; 74% to 75% for cows).  The lowest percentages of animals in common in the top 5% 351 

for MY occurred between the polygenic model and all genomic-polygenic models (71% to 352 

74% for sires; 66% to 69% for cows).   Considering the similarity between the GM80K-FI 353 

and GM80K-FH in terms of their estimates of genetic variances, heritabilities, and 354 

prediction accuracies for MY and FY, either one of these models would be suitable for 355 

genetic evaluation in this Thai multibreed population.   356 

 357 

4. Conclusions 358 

Estimates of additive genetic variances, heritabilities, and prediction accuracies for 359 

MY and FY from genomic-polygenic models were higher than those from the polygenic 360 

model.  Additive genetic variances, heritabilities, and prediction accuracies tended to 361 

increase as the number of SNP increased.  Animal rankings from high density genomic-362 

polygenic models should be preferred because they were based on EBV of higher accuracy 363 

than the polygenic and low density genomic-polygenic model.  Faster selection responses 364 
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for MY and FY would be expected from high density genomic models.  FImpute and 365 

Findhap performed similarly, thus either program would be appropriate for the Thai 366 

multibreed population.   367 
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Table 1  493 

Statistics for diagonal and off-diagonal elements of the pedigree and genomic relationship 494 

matrices 495 

Matrix
a
 Mean Minimum Maximum Variance 

 Diagonal elements 

A22 1.000 1.000 1.250 0.000 

G22 (GM7K) 1.002 0.837 1.432 0.011 

G22 (GM80K-FI) 1.000 0.721 1.599 0.003 

G22 (GM80K-FH) 1.000 0.488 2.354 0.010 

 Off-diagonal elements 

A22 0.003 0.000 0.750 0.001 

G22 (GM7K) 0.003 -0.145 1.218 0.006 

G22 (GM80K-FI) 0.003 -0.079 1.025 0.003 

G22 (GM80K-FH) 0.003 -0.091 1.258 0.002 

a 
A22 = additive relationship matrix for genotyped animals;  G22 = genomic relationship 496 

matrix for genotyped animals; GM7K = Genomic-polygenic model with actual 7K SNP; 497 

GM80K-FI = Genomic-polygenic model with actual and imputed 80K SNP using FImpute; 498 

GM80K-FH = Genomic-polygenic model with actual and imputed 80K SNP using Findhap. 499 

 500 



Table 2  501 

Additive genetic variances and covariances for 305-d milk yield (MY) and 305-d fat yield (FY) estimated using a polygenic model and 502 

three genomic-polygenic models with different sets of SNP genotypes 503 

Variance Component 

Model
a
 

PM SE GM7K SE GM80K-FI SE GM80K-FH SE 

Var (MY), kg
2
 100,030.0 25,447.0 126,480.0 24,023.0 172,190.0 30,558.0 174,600.0 29,971.0 

Cov (MY, FY), kg
2
 3,057.1 1,000.6 3,264.1 949.6 4,147.6 1,176.1 4,645.8 1,139.6 

Var (FY), kg
2
 176.5 55.3 183.7 53.5 229.9 64.5 196.1 59.5 

a
 PM = Polygenic model; GM7K = Genomic-polygenic model with actual 7K SNP information; GM80K-FI = Genomic-polygenic 504 

model with actual and imputed 80K SNP information using FImpute; GM80K-FH = Genomic-polygenic model with actual and 505 

imputed 80K SNP information using Findhap. 506 

  507 
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Table 3  508 

Environmental variances and covariances for 305-d milk yield (MY) and 305-d fat yield (FY) estimated using a polygenic model and 509 

three genomic-polygenic models with different sets of SNP genotypes 510 

Variance Component 

Model
a 

PM SE GM7K SE GM80K-FI SE GM80K-FH SE 

Var (MY), kg
2
 565,990.0 25,164.0 542,750.0 22,912.0 500,420.0 27,936.0 496,730.0 29,971.0 

Cov (MY, FY), kg
2
 17,099.0 1,011.4 16,955.0 942.1 16,125.0 1,117.4 15,624.0 1,139.6 

Var (FY), kg
2
 1,085.4 56.7 1,082.5 54.2 1,039.0 62.8 1,067.7 59.5 

a
 PM = Polygenic model; GM7K = Genomic-polygenic model with actual 7K SNP information; GM80K-FI = Genomic-polygenic 511 

model with actual and imputed 80K SNP information using FImpute; GM80K-FH = Genomic-polygenic model with actual and 512 

imputed 80K SNP information using Findhap. 513 

  514 
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Table 4  515 

Phenotypic variances and covariances for 305-d milk yield (MY) and 305-d fat yield (FY) estimated using a polygenic model and three 516 

genomic-polygenic models with different sets of SNP genotypes 517 

Variance Component 

Model
a
 

PM SD
b 

GM7K SD GM80K-FI SD GM80K-FH SD 

Var (MY), kg
2
 666,030.0 14,472.0 669,230.0 14,749.0 672,610.0 14,943.0 671,330.0 14,867.0 

Cov (MY, FY), kg
2
 20,156.0 603.5 20,219.0 610.8 20,273.0 615.2 20,270.0 611.2 

Var (FY), kg
2
 1,261.9 34.3 1,266.2 34.6 1,268.9 34.8 1,263.8 34.3 

a
 PM = Polygenic model; GM7K = Genomic-polygenic model with actual 7K SNP information; GM80K-FI = Genomic-polygenic 518 

model with actual and imputed 80K SNP information using FImpute; GM80K-FH = Genomic-polygenic model with actual and 519 

imputed 80K SNP information using Findhap. 520 

b
 Repeated sampling approach of Meyer and Houle (2013).  521 
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Table 5  522 

Heritabilities and correlations for 305-d milk yield (MY) and 305-d fat yield (FY) estimated using a polygenic model and three 523 

genomic-polygenic models with different sets of SNP genotypes 524 

Parameter 

Model
a
 

PM SD
b 

GM7K SD GM80K-FI SD GM80K-FH SD 

Heritability (MY) 0.15 0.04 0.19 0.03 0.26 0.04 0.26 0.04 

Heritability (FY) 0.14 0.04 0.15 0.04 0.18 0.05 0.16 0.05 

Genetic correlation (MY, FY) 0.73 0.13 0.68 0.11 0.66 0.11 0.79 0.11 

Environmental correlation (MY, FY) 0.69 0.02 0.70 0.02 0.71 0.02 0.68 0.02 

Phenotypic correlation (MY, FY) 0.70 0.01 0.69 0.01 0.69 0.01 0.70 0.01 

a
 PM = Polygenic model; GM7K = Genomic-polygenic model with actual 7K SNP information; GM80K-FI = Genomic-polygenic 525 

model with actual and imputed 80K SNP information using FImpute; GM80K-FH = Genomic-polygenic model with actual and 526 

imputed 80K SNP information using Findhap.  527 

b
 Repeated sampling approach of Meyer and Houle (2013). 528 

  529 
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Table 6  530 

Rank correlations between animal EBV for 305-d milk yield and fat yield evaluated using a polygenic model and three genomic-531 

polygenic models with different sets of SNP genotypes 532 

Trait 

Rank correlations
a
 

PM,  

GM7K 

PM,  

GM80K-FI 

PM,  

GM80K-FH 

GM7K,  

GM80K-FI 

GM7K,  

GM80K-FH 

GM80K-FI, 

GM80K-FH 

MY 0.80 0.84 0.84 0.90 0.89 0.96 

FY 0.80 0.83 0.79 0.91 0.86 0.93 

a
 PM = Polygenic model; GM7K = Genomic-polygenic model with actual 7K SNP information; GM80K-FI = Genomic-polygenic 533 

model with actual and imputed 80K SNP information using FImpute; GM80K-FH = Genomic-polygenic model with actual and 534 

imputed 80K SNP information using Findhap; All rank correlations were significant at P < 0.0001. 535 

  536 
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Table 7  537 

Rank correlations between sire EBV for 305-d milk yield (MY) and fat yield (FY) evaluated using a polygenic model and three 538 

genomic-polygenic models with different sets of SNP genotypes 539 

Trait Sires
b
 

Rank correlations
a
 

PM,  

GM7K 

PM,  

GM80K-FI 

PM,  

GM80K-FH 

GM7K,  

GM80K-FI 

GM7K,  

GM80K-FH 

GM80K-FI,  

GM80K-FH 

MY top 5% (62) 0.50 (74) 0.55 (71) 0.57 (74) 0.78 (79) 0.69 (76) 0.87 (87) 

 

top 15% (186) 0.78 (75) 0.79 (80) 0.78 (78) 0.83 (82) 0.80 (77) 0.92 (92) 

 

top 25% (309) 0.77 (80) 0.82 (85) 0.86 (83) 0.83 (85) 0.86 (82) 0.94 (90) 

 

100% (1,236) 0.82 0.88 0.85 0.92 0.88 0.94 

FY top 5% (62) 0.72 (79) 0.68 (82) 0.61 (63) 0.70 (81) 0.62 (68) 0.76 (76) 

 

top 15% (186) 0.88 (74) 0.89 (81) 0.78 (69) 0.88 (83) 0.76 (72) 0.84 (81) 

 

top 25% (309) 0.79 (81) 0.85 (83) 0.70 (77) 0.83 (86) 0.71 (81) 0.78 (88) 

 

100% (1,236) 0.83 0.87 0.80 0.93 0.87 0.92 

a
 PM = Polygenic model; GM7K = Genomic-polygenic model with actual 7K SNP information; GM80K-FI = Genomic-polygenic 540 

model with actual and imputed 80K SNP information using FImpute; GM80K-FH = Genomic-polygenic model with actual and 541 

imputed 80K SNP information using Findhap; All rank correlations were significant at P < 0.0001, except for top 5% between PM and 542 

GMLD that was significant at P < 0.0005; numbers in brackets are percentage of animals in common between pairs of models. 543 

b
 Numbers in brackets are numbers of sires. 

2
 Numbers in brackets are numbers of sires.   544 
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Table 8  545 

Rank correlations between cow EBV for 305-d milk yield (MY) and fat yield (FY) evaluated using a polygenic model and three 546 

genomic-polygenic models with different sets of SNP genotypes 547 

Trait Cows
b 

Rank correlations
a
 

PM, 

GM7K 

PM,  

GM80K-FI 

PM,  

GM80K-FH 

GM7K,  

GM80K-FI 

GM7K,  

GM80K-FH 

GM80K-FI, 

GM80K-FH 

MY top 5% (706) 0.68 (68) 0.64 (66) 0.67 (69) 0.71 (74) 0.71 (75) 0.90 (89) 

 

top 15%  (2,117) 0.70 (74) 0.67 (73) 0.68 (74) 0.76 (79) 0.75 (79) 0.91 (88) 

 

top 25%  (3,529) 0.74 (77) 0.72 (79) 0.74 (78) 0.79 (84) 0.79 (84) 0.90 (89) 

 

100% (14,113) 0.80 0.84 0.84 0.90 0.89 0.96 

FY top 5%  (706) 0.78 (65) 0.76 (69) 0.59 (61) 0.79 (75) 0.67 (68) 0.77 (76) 

 

top 15%  (2,117) 0.67 (74) 0.68 (76) 0.61 (69) 0.75 (81) 0.68 (76) 0.78 (83) 

 

top 25%  (3,529) 0.75 (76) 0.77 (78) 0.66 (73) 0.81 (85) 0.71 (80) 0.81 (85) 

 

100% (14,113) 0.79 0.83 0.79 0.91 0.86 0.93 

a
 PM = Polygenic model; GM7K = Genomic-polygenic model with actual 7K SNP information; GM80K-FI = Genomic-polygenic 548 

model with actual and imputed 80K SNP information using FImpute; GM80K-FH = Genomic-polygenic model with actual and 549 

imputed 80K SNP information using Findhap; All rank correlations were significant at P < 0.0001; numbers in brackets are percentage 550 

of animals in common between pairs of models. 551 

b
 Numbers in brackets are numbers of cows.  552 



 553 

Fig. 1.  Accuracy of estimated breeding values for 305-d milk yield and 305-d fat yield in a 554 

Thai multibreed population using polygenic models (PM), genomic-polygenic models with 555 

actual 7K SNP information (GM7K), genomic-polygenic models with actual and imputed 556 

80K SNP information from FImpute (GM80K-FI), and genomic-polygenic models with 557 

actual and imputed 80K SNP information from Findhap (GM80K-FH)
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